1 Probability Distributions

1.1 Concepts

Distribution	PMF	Example
Uniform	If $\# R(X)=n$, then $f(x)=\frac{1}{n}$ for all $x \in R(X)$.	Dice roll, $f(1)=f(2)=\cdots=$ $f(6)=\frac{1}{6}$.
Bernoulli Trial	$f(0)=1-p, f(1)=p$	Flipping a biased coin
Binomial	$f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$	p is probability of success. Repeat n Bernoulli trials. Number of 6's rolled when rolling 10 die is $f(k)=$ $\binom{10}{k}(1 / 6)^{k}(5 / 6)^{10-k}$.
Geometric	$f(k)=(1-p)^{k} p$	k failures and then a success.
Hyper-Geometric	$f(k)=\frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{n}{n}}$	Counting the number of red balls I pick out of n balls drawn if there are m red balls out of N balls total.
Poisson	$f(k)=\frac{\lambda^{k} e^{-\lambda}}{k!}$	Count the number of babies born today if on average there are 3 babies born a day.

1.2 Examples

2. On average, there are 20 rainy days in Berkeley per year. What is the probability that this year, there are 30 ?
3. The probability of seeing a shiny Pokemon is approximately 1 in $10000=10^{4}$. What is the probability that I don't see any in my playthrough if I see 10^{5} Pokemon total? (calculate both exactly and an approximation)

1.3 Problems

4. When a cell undergoes mitosis, the number of mutations that occurs is Poisson distributed and an average of 11 mutations occur. What is the probability that no more than 1 mutation occurs when a cell divides?
5. The number of chocolate chips in a cookie is Poisson distributed with an average of 15 chocolate chips. What is the probability that you pick up a cookie with only 10 chocolate chips in it?
6. The number of errors on a page is Poisson distributed with approximately 1 error per 100 pages of a book. What is the probability that a novel of 300 pages contains no errors?
7. Approximately 4 people are born every second. What is the probability that in a minute, there are 240 people born?

1.4 Extra Problems

8. When a cell undergoes mitosis, the number of mutations that occurs is Poisson distributed and an average of 8 mutations occur. What is the probability that no more than 1 mutation occurs when two cells divide?
9. The number of chocolate chips in a cookie is Poisson distributed with an average of 5 chocolate chips. What is the probability that you pick up a cookie with 10 chocolate chips in it?
10. The number of errors on a page is Poisson distributed with approximately 0.2 errors per 50 pages of a book. What is the probability that a novel of 300 pages contains no errors?
11. Approximately 4 people are born every second. What is the probability that in a minute, there are 80 people born?

2 Expected Value and Variance

2.1 Concepts

12.

Distribution	PMF	$E(X)$	Variance
Uniform	If $\# R(X)=n$, then		
	$f(x)=\frac{\sum_{i=1}^{n} \frac{x_{i}}{n}}{n}$ for all $x \in$	$\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{n}$	
	$R(X)$.		
Bernoulli Trial	$f(0)=1-p, f(1)=p$	p	$\operatorname{Var}(X)=p(1-p)$
Binomial	$f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$	$n p$	$n p(1-p)$
Geometric	$f(k)=(1-p)^{k} p$	$\frac{1-p}{p}$	$\operatorname{Var}(X)=\frac{1-p}{p^{2}}$
Hyper-Geometric	$f(k)=\frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}$	$\frac{n m}{N}$	$\frac{n m(N-m)(N-n)}{N^{2}(N-1)}$
Poisson	$f(k)=\frac{\lambda^{k} e^{-\lambda}}{k!}$	λ	λ

The Expected Value is the weighted average of all the values the random variables can take on. By definition, it satisfies some properties:

- $E[c]=c$
- $E[c X]=c E[X]$
- $E[X+Y]=E[X]+E[Y]$ for all random variables
- $E[X Y]=E[X] E[Y]$ for independent random variables.

The Variance is defined as $\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)$. An easier form is $E\left(X^{2}\right)-E(X)^{2}$. It satisfies some properties:

- $\operatorname{Var}(c)=0$
- $\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$
- $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+V(Y)$ for independent random variables.

2.2 Examples

13. I flip a fair coin 5 times. What is the expected number of heads I flip and what is the variance?
14. I roll two fair 6 sided die. What is the expected value of their product?
15. I flip a fair coin 10 times. What is the expected number of pairs of consecutive heads I flip? (The sequence HHH has two pairs of consecutive heads)

2.3 Problems

16. True False The expected value of a random variable X is the value such that the PMF at that point is the largest.
17. True False The expected value of a random variable X always exists.
18. While pulling out of a box of cookies, what is the expected number of cookies I have to pull out before I pull out an oatmeal raisin if 20% of cookies are oatmeal raisin? What is the variance?
19. What is the expected number of aces I have when I draw 5 cards out of a deck?
20. In a safari, safari-keepers have caught and tagged 300 rhinos. On a safari, out of the 15 different rhinos you see, there are 5 of them expected to be tagged. How many rhinos are there at the safari?
21. In a class of 30 students, I split them up into 6 groups of 5 on Tuesday. Today, Thursday, I split them up again randomly. What is the expected number of people in your new group were in your old group on Tuesday?
22. In a class of 30 students, I split them up into 6 groups of 5 . What is the expected number of days of splitting them up randomly into new groups of 5 before I split them up into the same groups again (assume that the groups are indistinguishable)?

2.4 Extra Problems

23. While pulling out of a box of cookies, what is the expected number of cookies I have to pull out before I pull out an oatmeal raisin if 15% of cookies are oatmeal raisin? What is the variance?
24. What is the expected number of kings I have when I draw 8 cards out of a deck?
25. In a safari, safari-keepers have caught and tagged 100 rhinos. On a safari, out of the 20 different rhinos you see, there are 8 of them expected to be tagged. How many rhinos are there at the safari?
